login
Third member of a sexy prime quadruple: value of p+12 such that p, p+6, p+12 and p+18 are all prime.
6

%I #27 Jan 25 2023 17:48:12

%S 17,23,53,73,263,613,653,1103,1493,1613,1753,1873,2383,2683,3313,3923,

%T 4013,5113,5393,5443,5653,6323,6373,9473,11833,12113,12653,13463,

%U 14633,14753,15803,15913,17483,18223,19483,20353,21493,23333,24103

%N Third member of a sexy prime quadruple: value of p+12 such that p, p+6, p+12 and p+18 are all prime.

%C Is 17 the only term that is not equal to 3 mod 10? It is the only such term up to the one millionth prime. - _Harvey P. Dale_, Jan 25 2023

%H Amiram Eldar, <a href="/A046123/b046123.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SexyPrimes.html">Sexy Primes</a>. [The definition in this webpage is unsatisfactory, because it defines a "sexy prime" as a pair of primes.- _N. J. A. Sloane_, Mar 07 2021].

%F a(n) = A046122(n) + 6. - _Amiram Eldar_, Apr 22 2022

%t lst={};Do[p=Prime[n];If[PrimeQ[p+6]&&PrimeQ[p+12]&&PrimeQ[p+18], AppendTo[lst, p+12]], {n, 8!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Aug 29 2008 *)

%t Select[Prime[Range[3000]],AllTrue[#+{-12,-6,6},PrimeQ]&] (* _Harvey P. Dale_, Jan 25 2023 *)

%Y Cf. A023201, A046117.

%Y Cf. A023271, A046122, A046124.

%K nonn

%O 1,1

%A _Eric W. Weisstein_