|
|
A046122
|
|
Second member of a sexy prime quadruple: value of p+6 such that p, p+6, p+12 and p+18 are all prime.
|
|
4
|
|
|
11, 17, 47, 67, 257, 607, 647, 1097, 1487, 1607, 1747, 1867, 2377, 2677, 3307, 3917, 4007, 5107, 5387, 5437, 5647, 6317, 6367, 9467, 11827, 12107, 12647, 13457, 14627, 14747, 15797, 15907, 17477, 18217, 19477, 20347, 21487, 23327, 24097
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..39.
Eric Weisstein's World of Mathematics, Sexy Primes. [The definition in this webpage is unsatisfactory, because it defines a "sexy prime" as a pair of primes.- N. J. A. Sloane, Mar 07 2021].
|
|
FORMULA
|
a(n) = 6 + A023271(n) = A046123(n) - 6. - R. J. Mathar, Jun 28 2012
|
|
MATHEMATICA
|
lst={}; Do[p=Prime[n]; If[PrimeQ[p+6]&&PrimeQ[p+12]&&PrimeQ[p+18], AppendTo[lst, p+6]], {n, 8!}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 29 2008 *)
|
|
CROSSREFS
|
Cf. A023201, A046117, A046123, A046124.
Sequence in context: A146036 A248482 A267772 * A217064 A242244 A228031
Adjacent sequences: A046119 A046120 A046121 * A046123 A046124 A046125
|
|
KEYWORD
|
nonn,changed
|
|
AUTHOR
|
Eric W. Weisstein
|
|
STATUS
|
approved
|
|
|
|