login
Largest member of a sexy prime triple; value of p+12 where p, p+6 and p+12 are all prime, but p+18 is not.
6

%I #21 Mar 07 2021 00:56:09

%S 19,29,43,59,79,109,113,163,179,239,269,283,359,379,569,599,619,659,

%T 739,953,983,1109,1129,1193,1229,1289,1303,1373,1439,1459,1499,1619,

%U 1669,1759,1789,1879,1913,1999,2143,2293,2389,2423,2689,2699,2719

%N Largest member of a sexy prime triple; value of p+12 where p, p+6 and p+12 are all prime, but p+18 is not.

%C If a sexy prime triple happens to include the last 3 members of a sexy prime quadruple, this sequence will contain the sexy prime triple's largest member; e.g., a(4)=59 is the largest member of the sexy prime triple (47, 53, 59), but is the fourth member of the sexy prime quadruple (41, 47, 53, 59). - _Daniel Forgues_, Aug 05 2009

%H Harvey P. Dale, <a href="/A046120/b046120.txt">Table of n, a(n) for n = 1..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SexyPrimes.html">Sexy Primes</a>. [The definition in this webpage is unsatisfactory, because it defines a "sexy prime" as a pair of primes.- _N. J. A. Sloane_, Mar 07 2021].

%F a(n) = A046118(n)+12 and a(n) = A046119(n)+6. - _Michel Marcus_, Jan 06 2015

%t lst={};Do[p=Prime[n];If[PrimeQ[p+6]&&PrimeQ[p+12]&&!PrimeQ[p+18], AppendTo[lst, p+12]], {n, 7!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Aug 29 2008 *)

%t #+12&/@Select[Prime[Range[400]],PrimeQ[#+{6,12,18}]=={True,True,False}&] (* _Harvey P. Dale_, Dec 08 2012 *)

%Y Cf. A023201, A046117.

%Y Cf. A046118, A046119.

%K nonn

%O 1,1

%A _Eric W. Weisstein_