login
6-multiperfect numbers.
23

%I #35 Nov 14 2019 12:06:56

%S 154345556085770649600,9186050031556349952000,

%T 680489641226538823680000,6205958672455589512937472000,

%U 13297004660164711617331200000,15229814702070563916152832000

%N 6-multiperfect numbers.

%C Conjectured finite and probably these are the only terms; cf. Flammenkamp's link. [_Georgi Guninski_, Jul 25 2012]

%H T. D. Noe, <a href="/A046061/b046061.txt">Table of n, a(n) for n = 1..245</a> (complete sequence from Flammenkamp)

%H F. Firoozbakht, M. F. Hasler, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Hasler/hasler2.html">Variations on Euclid's formula for Perfect Numbers</a>, JIS 13 (2010) #10.3.1.

%H Achim Flammenkamp, <a href="http://wwwhomes.uni-bielefeld.de/achim/mpn.html">The Multiply Perfect Numbers Page</a>

%H Fred Helenius, <a href="http://pw1.netcom.com/~fredh/index.html">Link to Glossary and Lists</a>

%H Walter Nissen, <a href="http://upforthecount.com/math/abundance.html">Abundancy : Some Resources </a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MultiperfectNumber.html">Multiperfect Number.</a>

%e From _Daniel Forgues_, May 09 2010: (Start)

%e 154345556085770649600 = 2^15*3^5*5^2*7^2*11*13*17*19*31*43*257

%e sigma(154345556085770649600) =

%e (2^16-1)/1*(3^6-1)/2*(5^3-1)/4*(7^3-1)/6*(11^2-1)/10*(13^2-1)/12*(17^2-1)/16*(19^2-1)/18*(31^2-1)/30*(43^2-1)/42*(257^2-1)/256

%e = 65535*364*31*57*12*14*18*20*32*44*258

%e = (5*3*17*257)*(2^2*7*13)*(31)*(3*19)*(2^2*3)*(2*7)*(2*3^2)*(2^2*5)*(2^5)*(2^2*11)*(2*3*43)

%e = 2^16*3^6*5^2*7^2*11*13*17*19*31*43*257

%e = (2*3) * (2^15*3^5*5^2*7^2*11*13*17*19*31*43*257)

%e = 6 * 154345556085770649600 (End)

%o (PARI) is(n)=sigma(n)==6*n \\ _Charles R Greathouse IV_, Apr 05 2013

%Y Cf. A000396, A005820, A027687, A046060, A007539.

%K nonn

%O 1,1

%A _Eric W. Weisstein_