%I #30 Nov 14 2019 09:38:50
%S 14182439040,31998395520,518666803200,13661860101120,30823866178560,
%T 740344994887680,796928461056000,212517062615531520,
%U 69357059049509038080,87934476737668055040,170206605192656148480
%N 5-multiperfect numbers.
%C Conjectured finite and probably these are the only terms; cf. Flammenkamp's link. [_Georgi Guninski_, Jul 25 2012]
%H T. D. Noe, <a href="/A046060/b046060.txt">Table of n, a(n) for n = 1..65</a> (complete sequence from Flammenkamp)
%H F. Firoozbakht, M. F. Hasler, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Hasler/hasler2.html">Variations on Euclid's formula for Perfect Numbers</a>, JIS 13 (2010) #10.3.1
%H Achim Flammenkamp, <a href="http://wwwhomes.uni-bielefeld.de/achim/mpn.html">The Multiply Perfect Numbers Page</a>
%H Fred Helenius, <a href="http://pw1.netcom.com/~fredh/index.html">Link to Glossary and Lists</a>
%H Walter Nissen, <a href="http://upforthecount.com/math/abundance.html">Abundancy : Some Resources </a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MultiperfectNumber.html">Multiperfect Number.</a>
%e From _Daniel Forgues_, May 09 2010: (Start)
%e 14182439040 = 2^7*3^4*5*7*11^2*17*19
%e sigma(14182439040) = (2^8-1)/1*(3^5-1)/2*(5^2-1)/4*(7^2-1)/6*(11^3-1)/10*(17^2-1)/16*(19^2-1)/18
%e = (255)*(121)*(6)*(8)*(133)*(18)*(20)
%e = (3*5*17)*(11^2)*(2*3)*(2^3)*(7*19)*(2*3^2)*(2^2*5)
%e = 2^7*3^4*5^2*7*11^2*17*19
%e = (5) * (2^7*3^4*5*7*11^2*17*19)
%e = 5 * 14182439040 (End)
%o (PARI) is(n)=sigma(n)==5*n \\ _Charles R Greathouse IV_, Apr 05 2013
%Y Cf. A000396, A005820, A027687, A046061, A007539.
%K nonn
%O 1,1
%A _Eric W. Weisstein_