%I #27 Mar 01 2019 16:28:45
%S 47,79,103,127,131,179,227,347,443,523,571,619,683,691,739,787,947,
%T 1051,1123,1723,1747,1867,2203,2347,2683
%N Discriminants of imaginary quadratic fields with class number 5 (negated).
%H Steven Arno, M. L. Robinson, Ferrell S. Wheeler, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa83/aa8341.pdf">Imaginary quadratic fields with small odd class number</a>, Acta Arith. 83 (1998) 295-330.
%H Duncan A. Buell, <a href="https://dx.doi.org/10.1090/S0025-5718-1977-0439802-X">Small class numbers and extreme values of L-functions of quadratic fields</a>, Math. Comp., 31 (1977), 786-796.
%H Keith Matthews, <a href="http://www.numbertheory.org/classnos/">Tables of imaginary quadratic fields with small class numbers</a>
%H C. Wagner, <a href="https://dx.doi.org/10.1090/S0025-5718-96-00722-3">Class Number 5, 6 and 7</a>, Math. Comput. 65, 785-800, 1996.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ClassNumber.html">Class Number.</a>
%H <a href="/index/Qua#quadfield">Index entries for sequences related to quadratic fields</a>
%t Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[2700], NumberFieldClassNumber[Sqrt[-#]] == 5 &]] (* _Jean-François Alcover_, Jun 27 2012 *)
%o (PARI) select(n->qfbclassno(-n)==5,vector(670,n,4*n+3)) \\ _Charles R Greathouse IV_, Apr 25 2013
%o (Sage) [n for n in (1..3000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==5] # _G. C. Greubel_, Mar 01 2019
%Y Cf. A006203, A013658, A014602, A014603, A046003-A046020.
%Y Cf. A191410.
%K nonn,fini,full
%O 1,1
%A _Eric W. Weisstein_