%I #10 Oct 10 2019 03:56:31
%S 1,2,2,4,6,6,6,8,10,10,10,10,10,12,14,14,14,16,18,18,18,20,22,22,22,
%T 22,22,22,22,24,26,26,26,28,30,30,30,32,34,34,34,36,38,38,38,40,42,42,
%U 42,44,46,46,46,46,46,46,46,46,46,46,46,48,50,50,50,52,54,54,54,56,58,58
%N Length of n-th term of binary Gleichniszahlen-Reihe (BGR) sequence A045998.
%C Now we count the leading zeros, of course.
%D N. Worrick, S. Lewis and B. Shrader, A possible formula for the length of BGR sequences, Graph Theory Notes of New York, XXXVI (1999), p. 25.
%F Reference gives a conjectured formula.
%e 1, 11, 01, 1011, 111001, 110011, 010001, ...
%Y Cf. A045998, A048522.
%K nonn,base,easy
%O 0,2
%A _N. J. A. Sloane_
%E More terms from _Patrick De Geest_, Jun 15 1999