%I #9 Oct 10 2019 03:56:28
%S 1,11,1,1011,111001,110011,10001,10111011,1110111001,1110110011,
%T 1110010001,1100111011,100111001,101100110011,11100100010001,
%U 11001110111011,1001110111001,1011001110110011,111001001110010001
%N Binary Gleichniszahlen-Reihe (BGR) sequence: describe previous term (cf. A005150), reduce number of digits seen mod 2 (then for the purposes of this data-base, discard leading zeros).
%C Terms with a leading zero: a(2), a(6), a(12), a(16), a(20), a(28), a(32), a(36), a(40), a(44), a(48), a(60), ...
%D N. Worrick, S. Lewis and B. Shrader, A possible formula for the length of BGR sequences, Graph Theory Notes of New York, XXXVI (1999), p. 25.
%e 1, 11, 01, 1011, 111001, 110011, 010001, ... (after 110011, next term is 212021 -> 010001 -> 10001).
%Y Cf. A005150, A045999, A048522.
%K nonn,base,easy
%O 0,2
%A _N. J. A. Sloane_
%E More terms from _Patrick De Geest_, Jun 15 1999