%I #36 Jan 10 2018 10:33:11
%S 1,1,1,1,1,1,1,2,2,1,1,3,8,3,1,1,5,55,55,5,1,1,8,610,6765,610,8,1,1,
%T 13,10946,9227465,9227465,10946,13,1,1,21,317811,225851433717,
%U 190392490709135,225851433717,317811,21,1,1,34,14930352
%N Rows of Fibonacci-Pascal triangle.
%H Reinhard Zumkeller, <a href="/A045995/b045995.txt">Rows n=0..14 of triangle, flattened</a>
%H R. Whitney, <a href="http://www.fq.math.ca/Scanned/13-3/advanced13-3.pdf">Problem H-254</a>, Fib. Quart., 13 (1975), p. 281.
%F Take Pascal triangle (A007318) and replace each i by Fibonacci(i): a(n,k)=Fibonacci(binomial(n,k)).
%e 1,
%e 1, 1,
%e 1, 1, 1,
%e 1, 2, 2, 1,
%e 1, 3, 8, 3, 1,
%e 1, 5, 55, 55, 5, 1,
%e 1, 8, 610, 6765, 610, 8, 1,
%e 1, 13, 10946, 9227465, 9227465, 10946, 13, 1,
%e 1, 21, 317811, 225851433717, 190392490709135, 225851433717, 317811, 21, 1,
%e ...
%p A045995 := proc(n,k)
%p combinat[fibonacci](binomial(n,k)) ;
%p end proc: # _R. J. Mathar_, Dec 03 2014
%t Flatten[Table[Fibonacci[Binomial[n,k]],{n,0,10},{k,0,n}]] (* _Harvey P. Dale_, Dec 31 2013 *)
%o (Haskell)
%o a045995 n k = a045995_tabl !! n !! k
%o a045995_row n = a045995_tabl !! n
%o a045995_tabl = map (map (a000045 . fromInteger)) a007318_tabl
%o -- _Reinhard Zumkeller_, Dec 29 2011
%Y Cf. A000045, A007318, A006449 (row sums), A081667.
%Y Main diagonal gives A281450.
%K nonn,easy,nice,tabl
%O 0,8
%A _N. J. A. Sloane_
%E More terms from _David W. Wilson_