|
|
A045967
|
|
a(1)=4; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+1}^{e_i+1}.
|
|
5
|
|
|
4, 9, 25, 27, 49, 225, 121, 81, 125, 441, 169, 675, 289, 1089, 1225, 243, 361, 1125, 529, 1323, 3025, 1521, 841, 2025, 343, 2601, 625, 3267, 961, 11025, 1369, 729, 4225, 3249, 5929, 3375, 1681, 4761, 7225, 3969, 1849, 27225, 2209, 4563, 6125, 7569, 2809, 6075
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
REFERENCES
|
From a puzzle proposed by Marc LeBrun.
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
|
|
MATHEMATICA
|
a[1]=4; a[n_] := Thread[f = FactorInteger[n]; Times @@ Power[f[[All, 1]] // NextPrime , f[[All, 2]] + 1]]; Array[a, 50] (* Jean-François Alcover, Feb 03 2015 *)
|
|
PROG
|
(Haskell)
a045967 1 = 4
a045967 n = product $ zipWith (^)
(map a151800 $ a027748_row n) (map (+ 1) $ a124010_row n)
-- Reinhard Zumkeller, Jun 03 2013, Dec 23 2011
|
|
CROSSREFS
|
Cf. A045966, A027748, A124010, A000040.
Cf. A151800.
Sequence in context: A126638 A340640 A073045 * A336445 A232241 A163836
Adjacent sequences: A045964 A045965 A045966 * A045968 A045969 A045970
|
|
KEYWORD
|
easy,nonn,nice
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from David W. Wilson
|
|
STATUS
|
approved
|
|
|
|