login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A045965 a(1)=2; if n = Product p_i^e_i, n>1, then a(n) = Product p_{i+1}^e_i. 11
2, 3, 5, 9, 7, 15, 11, 27, 25, 21, 13, 45, 17, 33, 35, 81, 19, 75, 23, 63, 55, 39, 29, 135, 49, 51, 125, 99, 31, 105, 37, 243, 65, 57, 77, 225, 41, 69, 85, 189, 43, 165, 47, 117, 175, 87, 53, 405, 121, 147, 95, 153, 59, 375, 91, 297, 115, 93, 61, 315, 67, 111, 275, 729, 119 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

From a puzzle proposed by Marc LeBrun.

LINKS

Indranil Ghosh, Table of n, a(n) for n = 1, 10000

MAPLE

succfactorization := proc(n) local p, d; if(1 = n) then RETURN(2); fi; p := 1; for d in ifactors(n)[ 2 ] do p := p * (nextprime(d[ 1 ])^d[ 2 ]); od; RETURN(p); end;

MATHEMATICA

a[1] = 2; a[p_?PrimeQ] := a[p] = Prime[PrimePi[p] + 1]; a[n_] := a[n] = Times @@ (a[First[#]]^Last[#] &) /@ FactorInteger[n]; Table[ a[n], {n, 1, 65}] (* Jean-Fran├žois Alcover, Jul 18 2013 *)

PROG

(Haskell)

a045965 n = if n == 1 then 2 else a003961 n

-- Reinhard Zumkeller, Jul 12 2012

(Python)

from sympy import factorint, primepi

from operator import mul

def a(n):

    f=factorint(n)

    return 2 if n==1 else reduce(mul, [prime(primepi(i) + 1)**f[i] for i in f]) # Indranil Ghosh, May 15 2017

CROSSREFS

Cf. A048673. Essentially identical to A003961.

Sequence in context: A011026 A069805 A123923 * A323390 A324886 A277332

Adjacent sequences:  A045962 A045963 A045964 * A045966 A045967 A045968

KEYWORD

easy,nonn,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from David W. Wilson.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 21 09:14 EST 2019. Contains 329362 sequences. (Running on oeis4.)