login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A045947 Triangles in open triangular matchstick arrangement (triangle minus one side) of side n. 10
0, 0, 2, 7, 17, 33, 57, 90, 134, 190, 260, 345, 447, 567, 707, 868, 1052, 1260, 1494, 1755, 2045, 2365, 2717, 3102, 3522, 3978, 4472, 5005, 5579, 6195, 6855, 7560, 8312, 9112, 9962, 10863, 11817, 12825, 13889, 15010, 16190, 17430, 18732, 20097, 21527 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (3, -2, -2, 3, -1).

FORMULA

G.f.: (2*x^2+x^3)/((1-x)^3*(1-x^2)). - Michael Somos

a(n) = (1/16)*(2*n*(2*n^2+n-2)+(-1)^n-1). - Bruno Berselli, Aug 29 2011

a(2*n) = A000447(n)+A002412(n); a(2*n+1) = A051895(n). - J. M. Bergot, Apr 12 2018

MATHEMATICA

LinearRecurrence[{3, -2, -2, 3, -1}, {0, 0, 2, 7, 17}, 45] (* Jean-Fran├žois Alcover, Dec 12 2016 *)

PROG

(PARI) a(n)=(4*n^3+2*n^2-4*n)\16

(MAGMA) [Floor((4*n^3+2*n^2-4*n)/16): n in [0..50]]; // Vincenzo Librandi, Aug 29 2011

CROSSREFS

First differences of A082289.

Sequence in context: A166381 A083723 A294866 * A145066 A014148 A070070

Adjacent sequences:  A045944 A045945 A045946 * A045948 A045949 A045950

KEYWORD

nonn,easy,nice

AUTHOR

R. K. Guy

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 15:03 EST 2018. Contains 318086 sequences. (Running on oeis4.)