login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A045931 Number of partitions of n with equal number of even and odd parts. 18
1, 0, 0, 1, 0, 2, 1, 3, 2, 5, 5, 7, 9, 11, 16, 18, 25, 28, 41, 44, 62, 70, 94, 107, 140, 163, 207, 245, 302, 361, 440, 527, 632, 763, 904, 1090, 1285, 1544, 1812, 2173, 2539, 3031, 3538, 4202, 4896, 5793, 6736, 7934, 9221, 10811, 12549, 14661, 16994, 19780 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

The trivariate g.f. with x marking weight (i.e., sum of the parts), t marking number of odd parts and s marking number of even parts, is 1/product((1-tx^(2j-1))(1-sx^(2j)), j=1..infinity). - Emeric Deutsch, Mar 30 2006

a(n) = A000041(n)-A171967(n) = A130780(n)-A108950(n) = A171966(n)-A108949(n). - Reinhard Zumkeller, Jan 21 2010

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..3500 (first 1001 trems from David W. Wilson)

FORMULA

G.f.: Sum_{k>=0} x^(3*k)/Product_{i=1..k} (1-x^(2*i))^2. - Vladeta Jovovic, Aug 18 2007

EXAMPLE

a(9) = 5 because we have [8,1], [7,2], [6,3], [5,4] and [2,2,2,1,1,1].

MAPLE

g:=1/product((1-t*x^(2*j-1))*(1-s*x^(2*j)), j=1..30): gser:=simplify(series(g, x=0, 56)): P[0]:=1: for n from 1 to 53 do P[n]:=subs(s=1/t, coeff(gser, x^n)) od: seq(coeff(t*P[n], t), n=0..53); # Emeric Deutsch, Mar 30 2006

MATHEMATICA

p[n_] := p[n] = Select[IntegerPartitions[n], Count[#, _?OddQ] == Count[#, _?EvenQ] &]; t = Table[p[n], {n, 0, 10}] (* partitions of n with # odd parts = # even parts *)

TableForm[t] (* partitions, vertical format *)

Table[Length[p[n]], {n, 0, 30}] (* A045931 *)

(* Peter J. C. Moses, Mar 10 2014 *)

CROSSREFS

Column k=0 of A240009.

Sequence in context: A151533 A128100 A035579 * A079974 A102517 A062951

Adjacent sequences:  A045928 A045929 A045930 * A045932 A045933 A045934

KEYWORD

nonn

AUTHOR

David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 17:41 EST 2018. Contains 318049 sequences. (Running on oeis4.)