%I
%S 1,1,1,2,2,7,7,10,10,34,40,53,61,103,112,143,145,369,458,579,712,938,
%T 1127,1383,1638,2308,2754,3334,3925,5092,5818,6989,7759,12278,14819,
%U 17881,21477,25887,30929,36954,43943,52918,62749,74407,87854,104534,122706,144457
%N Number of irreducible representations of symmetric group S_n for which every matrix has determinant 1.
%C Irreducible representations of S_n contained in the special linear group were first considered by L. Solomon (unpublished).
%D R. P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, Cambridge and New York, 1999, Exercise 7.55.
%H Amritanshu Prasad, <a href="/A045923/b045923.txt">Table of n, a(n) for n = 1..999</a>
%H A. Ayyer, A. Prasad and S. Spallone, <a href="https://arxiv.org/abs/1604.08837">Representations of symmetric groups with nontrivial determinant</a>, arXiv:1604.08837 [math.RT] (2016).
%F a(n) = A000041(n)  A272090(n).  _Amritanshu Prasad_, May 11 2016
%e a(5)=2, since only the irreducible representations indexed by the partitions (5) and (3,2) are contained in the special linear group.
%t b[1] = 0;
%t b[n_] := Module[{bb, e, pos, k, r},
%t bb = Reverse[IntegerDigits[n, 2]];
%t e = bb[[1]];
%t pos = DeleteCases[Flatten[Position[bb, 1]], 1]  1;
%t r = Length[pos];
%t Do[k[i] = pos[[i]], {i, 1, r}];
%t 2^Sum[k[i], {i, 2, r}] (2^(k[1]  1) + Sum[2^((v + 1) (k[1]  2)  v (v  1)/2), {v, 1, k[1]  1}] + e 2^(k[1] (k[1]  1)/2))
%t ];
%t a[n_] := PartitionsP[n]  b[n];
%t Array[a, 50] (* _JeanFrançois Alcover_, Aug 09 2018, after _Amritanshu Prasad_ *)
%Y Cf. A000041, A272090.
%K nonn,nice
%O 1,4
%A _Richard Stanley_
%E a(31)a(48) from _Amritanshu Prasad_, May 11 2016
