The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A045815 In the list of divisors of n (in base 6), each digit 0-5 appears equally often. 1
 20345, 23405, 30245, 30425, 32045, 40235, 40325, 42035, 43025, 45050, 45450, 50450, 52023, 22043435, 22053335, 23234545, 23344501, 23452345, 24034455, 24243535, 24352435, 24403451, 24433051, 30034454, 30202455, 30334045, 30340454, 30424235 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS E.g. divisors of 45050 are (1,2,3,10,4505,13414,22323,45050); the numbers of digits (0-5) are [ 0(4),1(4),2(4),3(4),4(4),5(4) ] LINKS N. Nomoto, In the list of divisors of n,... MAPLE k := 0:for i from 1 to 35000 do for j from 0 to 5 do a[j] := 0:end do:c := divisors(i):for j from 1 to nops(c) do b := convert(c[j], base, 6); for h from 1 to nops(b) do a[ b[h] ] := a[ b[h] ]+1:end do:end do: if(a[0]=a[1] and a[1]=a[2] and a[2]=a[3] and a[4]=a[5]) then k := k+1:q := convert(i, base, 6):d[k] := sum(q[o+1]*10^o, o=0..nops(q)-1):end if:end do: q := seq(d[l], l=1..k); isA045815 := proc(n) local c, j, b, h, a, q ; a := [0, 0, 0, 0, 0, 0] : c := numtheory[divisors](n): for j from 1 to nops(c) do b := convert(c[j], base, 6); for h from 1 to nops(b) do a[b[h]+1] := a[b[h]+1]+1: end do: end do: if(a[1]=a[2] and a[2]=a[3] and a[3]=a[4] and a[4]=a[5] and a[5]=a[6]) then q := convert(n, base, 6) ; add(q[o+1]*10^o, o=0..nops(q)-1) ; else -1 ; end if: end: n := 1: while true do a := isA045815(n) : if a >= 0 then printf("%d, ", a) ; fi ; n := n+1 : od : # R. J. Mathar, Jun 26 2007 CROSSREFS Cf. A038564, A038565, A045816. Sequence in context: A031825 A234631 A156408 * A182294 A103912 A256104 Adjacent sequences:  A045812 A045813 A045814 * A045816 A045817 A045818 KEYWORD easy,nonn,base AUTHOR EXTENSIONS More terms from Sascha Kurz, Mar 24 2002 Corrected by R. J. Mathar, Jun 26 2007 More terms from Sean A. Irvine, Sep 26 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 05:33 EDT 2020. Contains 337392 sequences. (Running on oeis4.)