login
A045655
Number of 2n-bead balanced binary strings, rotationally equivalent to reversed complement.
11
1, 2, 6, 20, 54, 152, 348, 884, 1974, 4556, 10056, 22508, 48636, 106472, 228444, 491120, 1046454, 2228192, 4713252, 9961436, 20960904, 44038280, 92252100, 192937940, 402599676, 838860152, 1744723896, 3623869388, 7515962172
OFFSET
0,2
COMMENTS
a(n) is the number of ordered pairs (a,b) of length n binary sequences such that a and b are equivalent by rotational symmetry. - Geoffrey Critzer, Dec 31 2011
a(n) is the weighted sum of binary strings of length n by their number of distinct images by rotation. There is a natural correspondence between the first 2^(n-1) sequences (starting with a 0) and the 2^(n-1) starting with a 1 by inversion. There is also an internal correspondance by order inversion. - Olivier Gérard, Jan 01 2011
The number of k-circulant n X n (0,1) matrices, which means the number of n X n binary matrices where rows from the 2nd row on are obtained from the preceding row by a cyclic shift by k columns for some 0 <= k < n. - R. J. Mathar, Mar 11 2017
LINKS
Chuan Guo, J. Shallit, A. M. Shur, On the Combinatorics of Palindromes and Antipalindromes, arXiv preprint arXiv:1503.09112 [cs.FL], 2015.
V. V. Strok, Circulant matrices and the spectra of de Bruijn graphs, Ukr. Math. J. 44 (11) (1992) 1446-1454.
FORMULA
For n >= 1, a(n) = Sum_{d|n} A045664(d) = Sum_{d|n} d*A027375(d) = Sum_{d|n} d^2*A001037(d).
a(n) = Sum_{d|n} A023900(n/d)*d*2^d. - Andrew Howroyd, Sep 15 2019
EXAMPLE
a(2)= 6 because there are 6 such ordered pairs of length 2 binary sequences: (00,00),(11,11),(01,01),(10,10),(01,10),(10,01).
a(3)= 20 because the classes of 3-bit strings are 1*(000), 3*(001,010,100), 3*(011,110,101), 1*(111) = 1 + 9 + 9 + 1.
MATHEMATICA
f[n_] := 2*Plus @@ Table[ Length[ Union[ NestList[ RotateLeft, IntegerDigits[b, 2, n], n - 1]]], {b, 0, 2^(n - 1) - 1}]; f[0] = 1; Array[f, 21, 0] (* Olivier Gérard, Jan 01 2012 *)
PROG
(PARI) c(n)={sumdiv(n, d, moebius(d)*d)} \\ A023900
a(n)={if(n<1, n==0, sumdiv(n, d, c(n/d)*d*2^d))} \\ Andrew Howroyd, Sep 15 2019
CROSSREFS
Cf. A000031 counts the string classes.
Sequence in context: A060344 A363600 A347582 * A303307 A321192 A327414
KEYWORD
nonn
STATUS
approved