

A045655


Number of 2nbead balanced binary strings, rotationally equivalent to reversed complement.


11



1, 2, 6, 20, 54, 152, 348, 884, 1974, 4556, 10056, 22508, 48636, 106472, 228444, 491120, 1046454, 2228192, 4713252, 9961436, 20960904, 44038280, 92252100, 192937940, 402599676, 838860152, 1744723896, 3623869388, 7515962172
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

a(n) is the number of ordered pairs (a,b) of length n binary sequences such that a and b are equivalent by rotational symmetry.  Geoffrey Critzer, Dec 31 2011
a(n) is the weighted sum of binary strings of length n by their number of distinct images by rotation. There is a natural correspondence between the first 2^(n1) sequences (starting with a 0) and the 2^(n1) starting with a 1 by inversion. There is also an internal correspondance by order inversion.  Olivier Gérard, Jan 01 2011
The number of kcirculant n X n (0,1) matrices, which means the number of n X n binary matrices where rows from the 2nd row on are obtained from the preceding row by a cyclic shift by k columns for some 0 <= k < n.  R. J. Mathar, Mar 11 2017


LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000
Chuan Guo, J. Shallit, A. M. Shur, On the Combinatorics of Palindromes and Antipalindromes, arXiv preprint arXiv:1503.09112 [cs.FL], 2015.
V. V. Strok, Circulant matrices and the spectra of de Bruijn graphs, Ukr. Math. J. 44 (11) (1992) 14461454.


FORMULA

For n >= 1, a(n) = Sum_{dn} A045664(d) = Sum_{dn} d*A027375(d) = Sum_{dn} d^2*A001037(d).
a(n) = Sum_{dn} A023900(n/d)*d*2^d.  Andrew Howroyd, Sep 15 2019


EXAMPLE

a(2)= 6 because there are 6 such ordered pairs of length 2 binary sequences: (00,00),(11,11),(01,01),(10,10),(01,10),(10,01).
a(3)= 20 because the classes of 3bit strings are 1*(000), 3*(001,010,100), 3*(011,110,101), 1*(111) = 1 + 9 + 9 + 1.


MATHEMATICA

f[n_] := 2*Plus @@ Table[ Length[ Union[ NestList[ RotateLeft, IntegerDigits[b, 2, n], n  1]]], {b, 0, 2^(n  1)  1}]; f[0] = 1; Array[f, 21, 0] (* Olivier Gérard, Jan 01 2012 *)


PROG

(PARI) c(n)={sumdiv(n, d, moebius(d)*d)} \\ A023900
a(n)={if(n<1, n==0, sumdiv(n, d, c(n/d)*d*2^d))} \\ Andrew Howroyd, Sep 15 2019


CROSSREFS

Cf. A000031 counts the string classes.
Cf. A000984, A023900, A045664, A045653, A045654, A045656.
Sequence in context: A066397 A060344 A347582 * A303307 A321192 A327414
Adjacent sequences: A045652 A045653 A045654 * A045656 A045657 A045658


KEYWORD

nonn


AUTHOR

David W. Wilson


STATUS

approved



