The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A045621 a(n) = 2^n - binomial(n, floor(n/2)). 12
 0, 1, 2, 5, 10, 22, 44, 93, 186, 386, 772, 1586, 3172, 6476, 12952, 26333, 52666, 106762, 213524, 431910, 863820, 1744436, 3488872, 7036530, 14073060, 28354132, 56708264, 114159428, 228318856, 459312152, 918624304, 1846943453, 3693886906 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS p(n) = a(n)/2^n is the probability that a majority of heads had occurred at some point after n flips of a fair coin. For example, after 3 flips of a coin, the probability is 5/8 that a majority of heads had occurred at some point. (First flip is heads, p=1/2, or sequence THH, p=1/8.) - Brian Galebach, May 14 2001 Hankel transform is (-1)^n*n. - Paul Barry, Jan 11 2007 Hankel transform of a(n+1) is A127630. - Paul Barry, Sep 01 2009 a(n) is the number of n-step walks on the number line that are positive at some point along the walk. - Benjamin Phillabaum, Mar 06 2011 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..247 Kairi Kangro, Mozhgan Pourmoradnasseri, Dirk Oliver Theis, Short note on the number of 1-ascents in dispersed dyck paths, arXiv:1603.01422 [math.CO], 2016. S. Mason and J. Parsley, A geometric and combinatorial view of weighted voting, arXiv preprint arXiv:1109.1082 [math.CO], 2011. FORMULA a(n) = 2^n - A001405(n). a(2*k) = 2*a(2*k-1), a(2*k+1) = 2*a(2*k) + Catalan(k). a(n+1) = b(0)*b(n)+b(1)*b(n-1)+...+b(n)*b(0), b(k)=C(k, [ k/2 ]). G.f.: c(x^2)*x/(1-2*x) where c(x) = g.f. for Catalan numbers A000108. a(n) = A054336(n, 1) (second column of triangle). E.g.f.: exp(2*x) - I_0(2*x) - I_1(2*x) where I_n(x) is n-th modified Bessel function as a function of x. - Benjamin Phillabaum, Mar 06 2011 a(2*n+1) = A000346(n); a(2*n) = A068551(n). - Emeric Deutsch, Nov 16 2003 a(n) = Sum_{k=0..n-1} binomial(n, floor(k/2)). - Paul Barry, Aug 05 2004 a(n+1) = 2*a(n) + Catalan(n/2)*(1+(-1)^n)/2. - Paul Barry, Aug 05 2004 a(n+1) = Sum_{k=0..floor(n/2)} 2^(n-2*k)*A000108(k). - Paul Barry, Sep 01 2009 (n+1)*a(n) +2*(-n-1)*a(n-1) +4*(-n+2)*a(n-2) +8*(n-2)*a(n-3) = 0. - R. J. Mathar, Dec 02 2012 MAPLE seq( 2^n -binomial(n, floor(n/2)), n=0..35); # G. C. Greubel, Jan 13 2020 MATHEMATICA Table[2^n - Binomial[n, Floor[n/2]], {n, 0, 35}] (* Roger L. Bagula, Aug 26 2006 *) PROG (PARI) {a(n)=if(n<0, 0, 2^n -binomial(n, n\2))} /* Michael Somos, Oct 31 2006 */ (MAGMA) [2^n - Binomial(n, Floor(n/2)): n in [0..35]]; // Bruno Berselli, Mar 08 2011 (Sage) [2^n -binomial(n, floor(n/2)) for n in (0..35)] # G. C. Greubel, Jan 13 2020 (GAP) List([0..35], n-> 2^n - Binomial(n, Int(n/2)) ); # G. C. Greubel, Jan 13 2020 CROSSREFS Cf. A000108, A001405, A000346, A054336, A068551. Sequence in context: A094537 A135098 A136488 * A026655 A336484 A244398 Adjacent sequences:  A045618 A045619 A045620 * A045622 A045623 A045624 KEYWORD nonn AUTHOR David M Bloom, Brooklyn College EXTENSIONS Edited by N. J. A. Sloane, Oct 08 2006 Adjustments to formulas (correcting offsets) from Michael Somos, Oct 31 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 13:57 EST 2020. Contains 338877 sequences. (Running on oeis4.)