login
Number of conjugacy classes of elements of order n in E_8(C).
1

%I #9 Mar 12 2021 23:06:12

%S 0,1,2,4,7,14,20,38,53,85,118,186,236,363,464,651,839,1172,1433,1975,

%T 2408,3175,3892,5082,6034,7810,9293,11682,13854,17341,20146,25079,

%U 29129,35476,41182,49892,57093,68969,78778,93660,106807,126671,142855,168794,190171

%N Number of conjugacy classes of elements of order n in E_8(C).

%H Arjeh M. Cohen and Robert L. Griess Jr., <a href="https://research.tue.nl/en/publications/on-finite-simple-subgroups-of-the-complex-lie-group-of-type-e8">On finite simple subgroups of the complex Lie group of type E_8</a>, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), 367-405, Proc. Sympos. Pure Math., 47, Part 2, Amer. Math. Soc., Providence, RI, 1987.

%F a(n) = Sum_{d|n} mu(n/d) * [x^d] b(x), n > 0, where b(x) is the g.f. for A045513. - _Sean A. Irvine_, Mar 12 2021

%Y Cf. A045513.

%K nonn

%O 0,3

%A _N. J. A. Sloane_

%E More terms from _Sean A. Irvine_, Mar 12 2021