login
A045473
Primes congruent to 6 mod 7.
12
13, 41, 83, 97, 139, 167, 181, 223, 251, 293, 307, 349, 419, 433, 461, 503, 587, 601, 643, 727, 769, 797, 811, 839, 853, 881, 937, 1021, 1049, 1063, 1091, 1217, 1231, 1259, 1301, 1399, 1427, 1483, 1511, 1553, 1567, 1609, 1637, 1693, 1721, 1777, 1847, 1861
OFFSET
1,1
COMMENTS
Conjecture: Primes p such that ((x+1)^7-1)/x has 3 irreducible factors of degree 2 over GF(p). - Federico Provvedi, Mar 31 2018
Also primes of the form 14*k + 13. - David A. Corneth, Apr 02 2018
LINKS
MAPLE
select(n->isprime(n) and modp(n, 7)=6, [$1..1900]); # Muniru A Asiru, Mar 31 2018
MATHEMATICA
Select[Range[6, 1600, 7], PrimeQ] (* Bruno Berselli, Aug 17 2012 *)
PROG
(Magma) [ p: p in PrimesUpTo(11000) | p mod 7 eq 6 ]; // Vincenzo Librandi, Aug 13 2012
(PARI) is(n)=isprime(n) && n%7==6 \\ Charles R Greathouse IV, Jul 01 2016
(GAP) Filtered([1..1900], n->IsPrime(n) and n mod 7 = 6); # Muniru A Asiru, Mar 31 2018
CROSSREFS
Cf. A042988 (complement).
Sequence in context: A043162 A043942 A004624 * A102083 A139866 A026918
KEYWORD
nonn,easy
STATUS
approved