login
A045447
Primes congruent to {0, 5} mod 7.
1
5, 7, 19, 47, 61, 89, 103, 131, 173, 229, 257, 271, 313, 383, 397, 439, 467, 509, 523, 593, 607, 677, 691, 719, 733, 761, 859, 887, 929, 971, 1013, 1069, 1097, 1153, 1181, 1223, 1237, 1279, 1307, 1321, 1433
OFFSET
1,1
COMMENTS
Because 7 is the only prime congruent to 0 mod 7, it is more efficient to search only for primes that are congruent to 5 mod 7 and then insert 7 as the second term of the sequence (see the second Mathematica program below). - Harvey P. Dale, Jun 24 2017
LINKS
MATHEMATICA
Select[Prime[Range[200]], MemberQ[{0, 5}, Mod[#, 7]]&] (* Vincenzo Librandi, Aug 13 2012 *)
Insert[Select[Prime[Range[500]], Mod[#, 7]==5&], 7, 2] (* Harvey P. Dale, Jun 24 2017 *)
PROG
(Magma) [ p: p in PrimesUpTo(2000) | p mod 7 in {0, 5} ]; // Vincenzo Librandi, Aug 13 2012
CROSSREFS
Cf. A000040.
Sequence in context: A288608 A079361 A162268 * A337439 A159048 A290415
KEYWORD
nonn,easy
STATUS
approved