%I #18 Sep 08 2022 08:44:56
%S 3,5,13,23,43,53,73,83,103,113,163,173,193,223,233,263,283,293,313,
%T 353,373,383,433,443,463,503,523,563,593,613,643,653,673,683,733,743,
%U 773,823,853,863,883,953,983,1013,1033,1063,1093,1103,1123,1153,1163,1193
%N Primes congruent to {0, 3} mod 5.
%C Because 5 is the only prime congruent to zero mod 5, it is far more efficient to insert 5 and search only for primes congruent to 3 mod 5. - _Harvey P. Dale_, Jun 24 2017
%H Vincenzo Librandi, <a href="/A045414/b045414.txt">Table of n, a(n) for n = 1..1000</a>
%t Select[Prime@Range[200], MemberQ[{0, 3}, Mod[ #, 5]] &] (* _Ray Chandler_, Nov 07 2006 *)
%t Insert[Select[Prime[Range[200]],Mod[#,5]==3&],5,2] (* See comment above *) (* _Harvey P. Dale_, Jun 24 2017 *)
%o (Magma) [ p: p in PrimesUpTo(1200) | p mod 5 in {0,3} ]; // _Vincenzo Librandi_, Aug 12 2012
%Y Same as A030431 with addition of primes congruent to 0 mod 5, i.e., 5.
%Y Cf. A000040.
%K nonn,easy
%O 1,1
%A _N. J. A. Sloane_
%E Extended by _Ray Chandler_, Nov 07 2006