login
A044102
Multiples of 36.
14
0, 36, 72, 108, 144, 180, 216, 252, 288, 324, 360, 396, 432, 468, 504, 540, 576, 612, 648, 684, 720, 756, 792, 828, 864, 900, 936, 972, 1008, 1044, 1080, 1116, 1152, 1188, 1224, 1260, 1296, 1332, 1368, 1404, 1440, 1476, 1512, 1548, 1584, 1620, 1656, 1692
OFFSET
0,2
COMMENTS
Also, k such that Fibonacci(k) mod 27 = 0. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 18 2004
A033183(a(n)) = n+1. - Reinhard Zumkeller, Nov 07 2009
A122841(a(n)) > 1 for n > 0. - Reinhard Zumkeller, Nov 10 2013
Sum of the numbers from 4*(n-1) to 4*(n+1). - Bruno Berselli, Oct 25 2018
FORMULA
G.f.: 36*x/(1 - x)^2.
a(n) = A167632(n+1). - Reinhard Zumkeller, Nov 07 2009
a(n) = 36*n. - Vincenzo Librandi, Jan 26 2011
MAPLE
seq(coeff(series(36*x/(1-x)^2, x, n+1), x, n), n = 0 .. 50); # Muniru A Asiru, Oct 25 2018
MATHEMATICA
Range[0, 2000, 36] (* Vladimir Joseph Stephan Orlovsky, May 31 2011 *)
CoefficientList[Series[36 x/(1 - x)^2, {x, 0, 100}], x] (* Vincenzo Librandi, May 20 2014 *)
PROG
(Haskell)
a044102 = (* 36)
a044102_list = [0, 36 ..] -- Reinhard Zumkeller, Nov 10 2013
(Magma) [36*n: n in [0..50]]; // Vincenzo Librandi, May 20 2014
(PARI) a(n)=36*n \\ Charles R Greathouse IV, Oct 07 2015
(GAP) a:=[0, 36];; for n in [3..50] do a[n]:=2*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Oct 25 2018
CROSSREFS
Subsequence of A008588.
Sequence in context: A114127 A322658 A224830 * A043370 A044483 A369374
KEYWORD
nonn,base,easy
STATUS
approved