login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A043567 Number of runs in base 15 representation of n. 4
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,16

COMMENTS

Every positive integers occurs infinitely many times.  See A297770 for a guide to related sequences.

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..65537

EXAMPLE

For n = 226, its base-15 representation is "101" as 226 = 1*(15^2) + 0*(15^1) + 1*(15^0). "101" has three runs, thus a(226) = 3.

For n = 482, its base-15 representation is "222" as 482 = 2*(15^2) + 2*(15^1) + 2*(15^0). "222" has just one run, thus a(482) = 1.

MATHEMATICA

Table[Length@ Split@ IntegerDigits[n, 15], {n, 0, 105}] (* Michael De Vlieger, Oct 10 2017 *)

PROG

(Scheme) (define (A043567 n) (let loop ((n n) (runs 1) (pd (modulo n 15))) (if (zero? n) runs (let ((d (modulo n 15))) (loop (/ (- n d) 15) (+ runs (if (not (= d pd)) 1 0)) d))))) ;; Antti Karttunen, Oct 10 2017

CROSSREFS

Cf. A043289, A043542, A297783 (number of distinct runs), A297770.

Sequence in context: A043541 A297783 A043542 * A297784 A043568 A043543

Adjacent sequences:  A043564 A043565 A043566 * A043568 A043569 A043570

KEYWORD

nonn,base

AUTHOR

Clark Kimberling

EXTENSIONS

More terms from Antti Karttunen, Oct 10 2017.

Updated by Clark Kimberling, Feb 04 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 06:30 EDT 2019. Contains 322237 sequences. (Running on oeis4.)