|
|
A043562
|
|
Number of runs in base 10 representation of n.
|
|
5
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,11
|
|
COMMENTS
|
Blecksmith, Filaseta, & Nicol show that lim a(k^n) = infinity whenever k is not a power of 10. More generally, in base b, the limit is infinity exactly when log k/log b is irrational. - Charles R Greathouse IV, Jan 29 2014
Every positive integers occurs infinitely many times. See A297770 for a guide to related sequences. - Clark Kimberling, Feb 04 2018
|
|
LINKS
|
Clark Kimberling, Table of n, a(n) for n = 0..10000
Richard Blecksmith, Michael Filaseta, and Charles Nicol, A result on the digits of a^n, Acta Arithmetica 64 (1993), pp. 331-339.
|
|
MATHEMATICA
|
Table[Length[Split[IntegerDigits[n]]], {n, 0, 90}] (* Harvey P. Dale, Aug 24 2016 *)
|
|
PROG
|
(PARI) a(n)=my(d=digits(n)); #d-sum(i=2, #d, d[i]==d[i-1]) \\ Charles R Greathouse IV, Jan 29 2014
|
|
CROSSREFS
|
Cf. A297778 (number of distinct runs), A297770.
Sequence in context: A043536 A043561 A297778 * A043537 A047726 A297779
Adjacent sequences: A043559 A043560 A043561 * A043563 A043564 A043565
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
Clark Kimberling
|
|
STATUS
|
approved
|
|
|
|