login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A043291 Every run length in base 2 is 2. 39
3, 12, 51, 204, 819, 3276, 13107, 52428, 209715, 838860, 3355443, 13421772, 53687091, 214748364, 858993459, 3435973836, 13743895347, 54975581388, 219902325555, 879609302220, 3518437208883, 14073748835532, 56294995342131 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) is the number whose binary representation is A153435(n). - Omar E. Pol, Jan 18 2009

See A033001 and following for the analog in other bases and the variant with runs of length >= 2. - M. F. Hasler, Feb 01 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..500

Index entries for linear recurrences with constant coefficients, signature (4,1,-4).

FORMULA

a(n)=4*a(n-1)+a(n-2)-4*a(n-3), n>3. - John W. Layman, Feb 01 2000.

a(n)=(1/10)*[3*(-1)^n+32*4^n-5], with n>=0. - Paolo P. Lava, Feb 10 2009

a(n) = floor(4^(n+1)/5). - Mircea Merca, Dec 26 2010

G.f.:  3*x / ( (x-1)*(4*x-1)*(1+x) ). - Joerg Arndt, Jan 08 2011

a(n) = 3*A033114(n). - R. J. Mathar, Jan 08 2011

MAPLE

seq(floor(4^(n+1)/5), n=1..25); # Mircea Merca, Dec 26 2010

MATHEMATICA

f[n_] := Floor[4^(n + 1)/5]; Array[f, 23] (* or *)

a[1] = 3; a[2] = 12; a[3] = 51; a[n_] := a[n] = 4 a[n - 1] + a[n - 2] - 4 a[n - 3]; Array[a, 23] (* or *)

3 LinearRecurrence[{4, 1, -4}, {1, 4, 17}, 23] (* Robert G. Wilson v, Jul 01 2014 *)

PROG

(MAGMA) [Floor(4^(n+1)/5): n in [1..30]]; // Vincenzo Librandi, Jun 26 2011

(PARI) A043291 = n->4^(n+1)\5 \\ M. F. Hasler, Feb 01 2014

CROSSREFS

Cf. A153435.

Cf. A043291 (subsequence); A000975.

Sequence in context: A242155 A009024 A265083 * A135343 A083314 A155179

Adjacent sequences:  A043288 A043289 A043290 * A043292 A043293 A043294

KEYWORD

nonn,base,easy

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 11 22:31 EST 2019. Contains 329046 sequences. (Running on oeis4.)