|
|
A043276
|
|
a(n) = maximal run length in base-2 representation of n.
|
|
32
|
|
|
1, 1, 2, 2, 1, 2, 3, 3, 2, 1, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 3, 3, 4, 5, 5, 4, 3, 3, 2, 2, 2, 3, 3, 2, 1, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 6, 6, 5, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 3, 3, 4, 5, 5, 4, 3, 3, 2, 2, 2, 3, 3, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
First occurrence of k is when n=2^k-1 and there is no last occurrence. - Robert G. Wilson v, Dec 14 2008
Sequences A000975, A037969, A037970, A037971 list numbers for which a(n)=1, a(n)=2, a(n)=3, a(n)=4. - M. F. Hasler, Jul 23 2013
a(n) = max(A101211(n,k): k = 1..A005811(n)). - Reinhard Zumkeller, Dec 16 2013
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
|
|
MATHEMATICA
|
f[n_] := Max @@ Length /@ Split@IntegerDigits[n, 2]; Array[f, 105] (* Robert G. Wilson v, Dec 14 2008 *)
|
|
PROG
|
(PARI) A043276(n, b=2)={my(m, c=1); while(n>0, n%b==(n\=b)%b && c++ && next; m=max(m, c); c=1); m} \\ - M. F. Hasler, Jul 23 2013
(PARI) a(n)=my(r, t); while(n, t=valuation(n, 2); if(t>r, r=t); n>>=t; t=valuation(n+1, 2); if(t>r, r=t); n>>=t); r \\ Charles R Greathouse IV, Nov 02 2016
(Haskell)
a043276 = maximum . a101211_row -- Reinhard Zumkeller, Dec 16 2013
|
|
CROSSREFS
|
Cf. A043277-A043290 for base-3 to base-16 analogs.
Sequence in context: A106580 A165915 A269783 * A319416 A284559 A284583
Adjacent sequences: A043273 A043274 A043275 * A043277 A043278 A043279
|
|
KEYWORD
|
nonn,base,look
|
|
AUTHOR
|
Clark Kimberling
|
|
EXTENSIONS
|
More terms from Robert G. Wilson v, Dec 14 2008
|
|
STATUS
|
approved
|
|
|
|