%I #22 Jan 31 2021 22:22:26
%S 0,0,48,576,4752,36864,271680,1931808,13384320,91133664,610863072,
%T 4051654752,26592186336,173304754368,1121024960064
%N Configurations of linear chains in a 4-dimensional hypercubic lattice.
%C In the notation of Nemirovsky et al. (1992), a(n), the n-th term of the current sequence is C_{n,m} with m=1 (and d=4). Here, for a d-dimensional hypercubic lattice, C_{n,m} is "the number of configurations of an n-bond self-avoiding chain with m neighbor contacts." (For d=2, we have C_{n,m=1} = A033155(n) while for d=3, we have C_{n,m=1}=A047057(n).) These numbers are given in Table I (p. 1088) in the paper by Nemirovsky et al. (1992). - _Petros Hadjicostas_, Jan 04 2019
%H A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, <a href="http://dx.doi.org/10.1007/BF01049010">Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers</a>, J. Statist. Phys., 67 (1992), 1083-1108.
%Y Cf. A033155, A047057.
%K nonn,more
%O 1,3
%A _N. J. A. Sloane_
%E Name edited by _Petros Hadjicostas_, Jan 04 2019
%E a(12)-a(15) from _Sean A. Irvine_, Jan 31 2021