login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numerators of continued fraction convergents to sqrt(970).
2

%I #14 Jun 26 2022 23:44:07

%S 31,187,218,2149,2367,4516,43011,47527,328173,20394253,122693691,

%T 143087944,1410485187,1553573131,2964058318,28230097993,31194156311,

%U 215395035859,13385686379569,80529513313273,93915199692842,925766310548851,1019681510241693

%N Numerators of continued fraction convergents to sqrt(970).

%H Vincenzo Librandi, <a href="/A042876/b042876.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,656346,0,0,0,0,0,0,0,0,1).

%F G.f.: -(x^17 - 31*x^16 + 187*x^15 - 218*x^14 + 2149*x^13 - 2367*x^12 + 4516*x^11 - 43011*x^10 + 47527*x^9 + 328173*x^8 + 47527*x^7 + 43011*x^6 + 4516*x^5 + 2367*x^4 + 2149*x^3 + 218*x^2 + 187*x + 31) / (x^18 + 656346*x^9 - 1). - _Colin Barker_, Dec 25 2013

%t Numerator[Convergents[Sqrt[970], 30]] (* _Vincenzo Librandi_, Dec 08 2013 *)

%Y Cf. A042877, A040938.

%K nonn,frac,easy

%O 0,1

%A _N. J. A. Sloane_

%E More terms from _Colin Barker_, Dec 25 2013