This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A042787 Denominators of continued fraction convergents to sqrt(924). 2
 1, 2, 3, 5, 73, 78, 151, 380, 22951, 46282, 69233, 115515, 1686443, 1801958, 3488401, 8778760, 530214001, 1069206762, 1599420763, 2668627525, 38960206113, 41628833638, 80589039751, 202806913140, 12249003828151, 24700814569442, 36949818397593 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 23102, 0, 0, 0, 0, 0, 0, 0, -1). FORMULA G.f.: -(x^14 -2*x^13 +3*x^12 -5*x^11 +73*x^10 -78*x^9 +151*x^8 -380*x^7 -151*x^6 -78*x^5 -73*x^4 -5*x^3 -3*x^2 -2*x -1) / ((x^8 -152*x^4 +1)*(x^8 +152*x^4 +1)). - Colin Barker, Dec 23 2013 MAPLE convert(sqrt(924), confrac, 30, cvgts): denom(cvgts); # Wesley Ivan Hurt, Dec 23 2013 MATHEMATICA Denominator[Convergents[Sqrt[924], 30]] (* Wesley Ivan Hurt, Dec 23 2013 *) CoefficientList[Series[-(x^14 - 2 x^13 + 3 x^12 - 5 x^11 + 73 x^10 - 78 x^9 + 151 x^8 - 380 x^7 - 151 x^6 - 78 x^5 - 73 x^4 - 5 x^3 - 3 x^2 - 2 x - 1)/((x^8 - 152 x^4 + 1) (x^8 + 152 x^4 + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 23 2013 *) CROSSREFS Cf. A042786, A040893. Sequence in context: A270582 A270916 A029975 * A270355 A041131 A084960 Adjacent sequences:  A042784 A042785 A042786 * A042788 A042789 A042790 KEYWORD nonn,frac,easy AUTHOR EXTENSIONS More terms from Colin Barker, Dec 23 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 26 04:11 EDT 2019. Contains 322469 sequences. (Running on oeis4.)