login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A042755 Denominators of continued fraction convergents to sqrt(908). 2
1, 7, 8, 15, 218, 233, 451, 3390, 203851, 1430347, 1634198, 3064545, 44537828, 47602373, 92140201, 692583780, 41647167001, 292222752787, 333869919788, 626092672575, 9099167335838, 9725260008413, 18824427344251, 141496251418170, 8508599512434451 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,204302,0,0,0,0,0,0,0,-1).

FORMULA

G.f.: -(x^14 -7*x^13 +8*x^12 -15*x^11 +218*x^10 -233*x^9 +451*x^8 -3390*x^7 -451*x^6 -233*x^5 -218*x^4 -15*x^3 -8*x^2 -7*x -1) / ((x^8 -452*x^4 +1)*(x^8 +452*x^4 +1)). - Colin Barker, Dec 22 2013

a(n) = 204302*a(n-8) - a(n-16) for n>15. - Vincenzo Librandi, Jan 28 2014

MATHEMATICA

Denominator[Convergents[Sqrt[908], 30]] (* or *) LinearRecurrence[ {0, 0, 0, 0, 0, 0, 0, 204302, 0, 0, 0, 0, 0, 0, 0, -1}, {1, 7, 8, 15, 218, 233, 451, 3390, 203851, 1430347, 1634198, 3064545, 44537828, 47602373, 92140201, 692583780}, 30] (* Harvey P. Dale, Jan 16 2014 *)

PROG

(MAGMA) I:=[1, 7, 8, 15, 218, 233, 451, 3390, 203851, 1430347, 1634198, 3064545, 44537828, 47602373, 92140201, 692583780]; [n le 16 select I[n] else 204302*Self(n-8)-Self(n-16): n in [1..30]]; // Vincenzo Librandi, Jan 28 2014

CROSSREFS

Cf. A042754, A040877.

Sequence in context: A041675 A041098 A041427 * A093083 A323418 A125195

Adjacent sequences:  A042752 A042753 A042754 * A042756 A042757 A042758

KEYWORD

nonn,frac,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Colin Barker, Dec 22 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 10:59 EST 2019. Contains 320219 sequences. (Running on oeis4.)