%I #29 Dec 26 2023 07:03:50
%S 30,1801,108090,6487201,389340150,23366896201,1402403112210,
%T 84167553628801,5051455620840270,303171504804045001,
%U 18195341743863540330,1092023676136616464801,65539615909940851428390,3933468978272587702168201,236073678312265202981520450,14168354167714184766593395201
%N Numerators of continued fraction convergents to sqrt(901).
%H Vincenzo Librandi, <a href="/A042740/b042740.txt">Table of n, a(n) for n = 0..200</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (60,1).
%F From _Philippe Deléham_, Nov 23 2008: (Start)
%F a(n) = 60*a(n-1)+a(n-2) for n>1, a(0)=30, a(1)=1801.
%F G.f.: (30+x)/(1-60*x-x^2). (End)
%F E.g.f.: exp(30*x)*(30*cosh(sqrt(901)*x) + sqrt(901)*sinh(sqrt(901)*x)). - _Stefano Spezia_, May 14 2023
%t Numerator[Convergents[Sqrt[901], 30]] (* _Vincenzo Librandi_, Dec 03 2013 *)
%Y Cf. A042741.
%K nonn,frac,easy
%O 0,1
%A _N. J. A. Sloane_