login
A042668
Numerators of continued fraction convergents to sqrt(864).
2
29, 59, 88, 147, 823, 970, 13433, 14403, 85448, 99851, 185299, 470449, 27471341, 55413131, 82884472, 138297603, 774372487, 912670090, 12639083657, 13551753747, 80397852392, 93949606139, 174347458531, 442644523201, 25847729804189, 52138104131579
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,940898,0,0,0,0,0,0,0,0,0,0,0,-1).
FORMULA
G.f.: -(x^23 -29*x^22 +59*x^21 -88*x^20 +147*x^19 -823*x^18 +970*x^17 -13433*x^16 +14403*x^15 -85448*x^14 +99851*x^13 -185299*x^12 -470449*x^11 -185299*x^10 -99851*x^9 -85448*x^8 -14403*x^7 -13433*x^6 -970*x^5 -823*x^4 -147*x^3 -88*x^2 -59*x -29) / ((x^4 -6*x^3 +13*x^2 -6*x +1)*(x^4 -10*x^2 +1)*(x^4 +10*x^2 +1)*(x^4 +6*x^3 +13*x^2 +6*x +1)*(x^8 +10*x^6 +99*x^4 +10*x^2 +1)). - Colin Barker, Dec 20 2013
a(n) = 940898*a(n-12)-a(n-24). - Wesley Ivan Hurt, Apr 26 2021
MATHEMATICA
Numerator[Convergents[Sqrt[864], 30]] (* Vincenzo Librandi, Nov 30 2013 *)
CROSSREFS
Sequence in context: A055784 A083821 A042666 * A042664 A042662 A128469
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Dec 20 2013
STATUS
approved