login
Numerators of continued fraction convergents to sqrt(859).
2

%I #14 Mar 18 2017 17:43:54

%S 29,88,381,1993,2374,4367,6741,17849,42439,145166,332771,6467815,

%T 58543106,65010921,188564948,253575869,442140817,2022139137,

%U 2464279954,9414978999,106029048943,221473076885

%N Numerators of continued fraction convergents to sqrt(859).

%H Vincenzo Librandi, <a href="/A042658/b042658.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_92">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4117689543959286120248020, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).

%F a(n) = 4117689543959286120248020*a(n-46) - a(n-92) for n>91. [_Bruno Berselli_, Dec 01 2013]

%t Numerator[Convergents[Sqrt[859], 30]] (* _Harvey P. Dale_, Oct 31 2013 *)

%Y Cf. A042659.

%K nonn,cofr,frac,easy

%O 0,1

%A _N. J. A. Sloane_.