login
Denominators of continued fraction convergents to sqrt(752).
2

%I #16 Jun 19 2021 20:06:51

%S 1,2,5,7,19,26,71,168,9143,18454,46051,64505,175061,239566,654193,

%T 1547952,84243601,170035154,424313909,594349063,1613012035,2207361098,

%U 6027734231,14262829560,776220530471,1566703890502,3909628311475,5476332201977,14862292715429

%N Denominators of continued fraction convergents to sqrt(752).

%H Vincenzo Librandi, <a href="/A042449/b042449.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,9214,0,0,0,0,0,0,0,-1).

%F G.f.: -(x^14 -2*x^13 +5*x^12 -7*x^11 +19*x^10 -26*x^9 +71*x^8 -168*x^7 -71*x^6 -26*x^5 -19*x^4 -7*x^3 -5*x^2 -2*x -1) / ((x^8 -96*x^4 +1)*(x^8 +96*x^4 +1)). - _Colin Barker_, Dec 14 2013

%t Denominator[Convergents[Sqrt[752], 30]] (* _Vincenzo Librandi_, Jan 22 2014 *)

%t LinearRecurrence[{0,0,0,0,0,0,0,9214,0,0,0,0,0,0,0,-1},{1,2,5,7,19,26,71,168,9143,18454,46051,64505,175061,239566,654193,1547952},30] (* _Harvey P. Dale_, Jun 19 2021 *)

%Y Cf. A042448, A040724.

%K nonn,frac,easy

%O 0,2

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Dec 14 2013