login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A042405 Denominators of continued fraction convergents to sqrt(730). 2
1, 54, 2917, 157572, 8511805, 459795042, 24837444073, 1341681774984, 72475653293209, 3915026959608270, 211483931472139789, 11424047326455156876, 617110039560050611093, 33335366183569188155898, 1800726883952296211029585, 97272587099607564583753488 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (54, 1).

FORMULA

a(n) = F(n, 54), the n-th Fibonacci polynomial evaluated at x=54. - T. D. Noe, Jan 19 2006

a(n) = 54*a(n-1)+a(n-2) for n>1; a(0)=1, a(1)=54. G.f.: 1/(1-54*x-x^2). [Philippe Deléham, Nov 23 2008]

a(n) = (1/2)*((27+sqrt(730))^n+(27-sqrt(730))^n)+(27/1460)*sqrt(730)*((27+sqrt(730))^n-(27 -sqrt(730))^n). [Paolo P. Lava, Dec 01 2008]

MATHEMATICA

a=0; lst = {}; s = 0; Do[a = s-(a-1); AppendTo[lst, a]; s+ = a*54, {n, 3*4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)

Denominator[Convergents[Sqrt[730], 30]] (* Vincenzo Librandi, Jan 21 2014 *)

CROSSREFS

Cf. A042404.

Sequence in context: A207093 A188990 A189200 * A187304 A212705 A046199

Adjacent sequences:  A042402 A042403 A042404 * A042406 A042407 A042408

KEYWORD

nonn,frac,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

a(15) from Colin Barker, Dec 11 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 24 07:58 EST 2017. Contains 295173 sequences.