login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Denominators of continued fraction convergents to sqrt(710).
2

%I #20 Jan 03 2024 10:49:21

%S 1,1,2,3,14,17,31,48,2527,2575,5102,7677,35810,43487,79297,122784,

%T 6464065,6586849,13050914,19637763,91601966,111239729,202841695,

%U 314081424,16535075743,16849157167,33384232910,50233390077,234317793218,284551183295

%N Denominators of continued fraction convergents to sqrt(710).

%H Vincenzo Librandi, <a href="/A042367/b042367.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 2558, 0, 0, 0, 0, 0, 0, 0, -1).

%F G.f.: -(x^2-x-1)*(x^4+3*x^2+1)*(x^8+16*x^4+1) / (x^16-2558*x^8+1). - _Colin Barker_, Dec 09 2013

%t Denominator[Convergents[Sqrt[710], 30]] (* _Vincenzo Librandi_, Jan 20 2014 *)

%t LinearRecurrence[{0,0,0,0,0,0,0,2558,0,0,0,0,0,0,0,-1},{1,1,2,3,14,17,31,48,2527,2575,5102,7677,35810,43487,79297,122784},30] (* _Harvey P. Dale_, Jan 03 2024 *)

%Y Cf. A042366, A040683.

%K nonn,frac,easy

%O 0,3

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Dec 09 2013