login
Denominators of continued fraction convergents to sqrt(594).
2

%I #14 Jun 13 2015 00:49:39

%S 1,2,3,8,43,1040,5243,11526,16769,45064,2179841,4404746,6584587,

%T 17573920,94454187,2284474408,11516826227,25318126862,36834953089,

%U 98988033040,4788260539009,9675509111058,14463769650067,38603048411192,207479011706027,5018099329355840

%N Denominators of continued fraction convergents to sqrt(594).

%H Vincenzo Librandi, <a href="/A042139/b042139.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,2196610,0,0,0,0,0,0,0,0,0,-1).

%F G.f.: -(x^18 -2*x^17 +3*x^16 -8*x^15 +43*x^14 -1040*x^13 +5243*x^12 -11526*x^11 +16769*x^10 -45064*x^9 -16769*x^8 -11526*x^7 -5243*x^6 -1040*x^5 -43*x^4 -8*x^3 -3*x^2 -2*x -1) / (x^20 -2196610*x^10 +1). - _Colin Barker_, Dec 02 2013

%F a(n) = 2196610*a(n-10) - a(n-20) for n>19. - _Vincenzo Librandi_, Jan 15 2014

%t Denominator[Convergents[Sqrt[594], 30]] (* _Vincenzo Librandi_, Jan 15 2014 *)

%Y Cf. A042138, A040569.

%K nonn,frac,easy

%O 0,2

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Dec 02 2013