This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A042105 Denominators of continued fraction convergents to sqrt(577). 2
 1, 48, 2305, 110688, 5315329, 255246480, 12257146369, 588598272192, 28264974211585, 1357307360428272, 65179018274768641, 3129950184549323040, 150302787876642274561, 7217663768263378501968, 346598163664518810369025, 16643929519665166276215168 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (48,1). FORMULA a(n) = F(n, 48), the n-th Fibonacci polynomial evaluated at x=48. - T. D. Noe, Jan 19 2006 From Philippe Deléham, Nov 23 2008: (Start) a(n) = 48*a(n-1) + a(n-2), n>1; a(0)=1, a(1)=48. G.f.: 1/(1 - 48*x - x^2). (End) MATHEMATICA a=0; lst={}; s=0; Do[a=s-(a-1); AppendTo[lst, a]; s+=a*48, {n, 3*4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *) Denominator[Convergents[Sqrt[577], 30]] (* Vincenzo Librandi, Jan 14 2014 *) LinearRecurrence[{48, 1}, {1, 48}, 20] (* Harvey P. Dale, Aug 21 2019 *) CROSSREFS Cf. A042104, A040552. Sequence in context: A158783 A227139 A009992 * A206046 A079240 A275564 Adjacent sequences:  A042102 A042103 A042104 * A042106 A042107 A042108 KEYWORD nonn,frac,easy AUTHOR EXTENSIONS Additional term from Colin Barker, Dec 01 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 21:48 EST 2019. Contains 329809 sequences. (Running on oeis4.)