login
Numerators of continued fraction convergents to sqrt(540).
2

%I #15 Sep 05 2022 21:52:16

%S 23,93,395,488,5275,5763,28327,119071,5505593,22141443,94071365,

%T 116212808,1256199445,1372412253,6745848457,28355806081,1311112928183,

%U 5272807518813,22402343003435,27675150522248,299153848225915,326828998748163,1606469843218567

%N Numerators of continued fraction convergents to sqrt(540).

%H Vincenzo Librandi, <a href="/A042032/b042032.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,238142,0,0,0,0,0,0,0,-1).

%F G.f.: -(x^15 -23*x^14 +93*x^13 -395*x^12 +488*x^11 -5275*x^10 +5763*x^9 -28327*x^8 -119071*x^7 -28327*x^6 -5763*x^5 -5275*x^4 -488*x^3 -395*x^2 -93*x -23) / ((x^8 -488*x^4 +1)*(x^8 +488*x^4 +1)). - _Colin Barker_, Nov 29 2013

%F a(n) = 238142*a(n-8) - a(n-16). - _Wesley Ivan Hurt_, Sep 05 2022

%t Numerator[Convergents[Sqrt[540], 30]] (* _Vincenzo Librandi_, Nov 14 2013 *)

%Y Cf. A042033, A040516.

%K nonn,cofr,frac,easy,less

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Nov 29 2013