login
Numerators of continued fraction convergents to sqrt(485).
3

%I #32 Dec 26 2023 06:37:27

%S 22,969,42658,1877921,82671182,3639409929,160216708058,7053174564481,

%T 310499897545222,13669048666554249,601748641225932178,

%U 26490609262607570081,1166188556195959015742,51338787081884804262729,2260072820159127346575818

%N Numerators of continued fraction convergents to sqrt(485).

%H Vincenzo Librandi, <a href="/A041924/b041924.txt">Table of n, a(n) for n = 0..200</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (44, 1).

%F a(n) = 44*a(n-1)+a(n-2) for n>1, a(0)=22, a(1)=969. G.f.: (22+x)/(1-44*x-x^2). [_Philippe Deléham_, Nov 23 2008]

%t Numerator[Convergents[Sqrt[485], 30]] (* _Vincenzo Librandi_, Nov 12 2013 *)

%t LinearRecurrence[{44,1},{22,969},20] (* _Harvey P. Dale_, Dec 24 2023 *)

%Y Cf. A041925, A040462.

%K nonn,cofr,frac,easy,less

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Nov 27 2013