login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numerators of continued fraction convergents to sqrt(459).
2

%I #16 Mar 18 2017 13:05:23

%S 21,43,107,150,707,14997,60695,75692,212079,499850,21205779,42911408,

%T 107028595,149940003,706788607,14992500750,60676791607,75669292357,

%U 212015376321,499700044999,21199417266279,42898534577557,106996486421393,149895020998950

%N Numerators of continued fraction convergents to sqrt(459).

%H Vincenzo Librandi, <a href="/A041874/b041874.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_20">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 999700, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).

%F G.f.: -(x^19 -21*x^18 +43*x^17 -107*x^16 +150*x^15 -707*x^14 +14997*x^13 -60695*x^12 +75692*x^11 -212079*x^10 -499850*x^9 -212079*x^8 -75692*x^7 -60695*x^6 -14997*x^5 -707*x^4 -150*x^3 -107*x^2 -43*x -21) / (x^20 -999700*x^10 +1). - _Colin Barker_, Nov 26 2013

%t Numerator[Convergents[Sqrt[459], 30]] (* _Vincenzo Librandi_, Nov 11 2013 *)

%Y Cf. A041875, A040437.

%K nonn,cofr,frac,easy,less

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Nov 26 2013