login
A041847
Denominators of continued fraction convergents to sqrt(445).
2
1, 10, 11, 21, 221, 9303, 93251, 102554, 195805, 2060604, 86741173, 869472334, 956213507, 1825685841, 19213071917, 808774706355, 8106960135467, 8915734841822, 17022694977289, 179142684614712, 7541015448795193, 75589297172566642, 83130312621361835
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 9324, 0, 0, 0, 0, 1).
FORMULA
G.f.: -(x^8 -10*x^7 +11*x^6 -21*x^5 +221*x^4 +21*x^3 +11*x^2 +10*x +1) / (x^10 +9324*x^5 -1). - Colin Barker, Nov 26 2013
a(n) = 9324*a(n-5) + a(n-10) for n>9. - Vincenzo Librandi, Dec 25 2013
MATHEMATICA
Denominator[Convergents[Sqrt[445], 30]] (* Vincenzo Librandi, Dec 25 2013 *)
LinearRecurrence[{0, 0, 0, 0, 9324, 0, 0, 0, 0, 1}, {1, 10, 11, 21, 221, 9303, 93251, 102554, 195805, 2060604}, 30] (* Harvey P. Dale, Mar 24 2022 *)
PROG
(Magma) I:=[1, 10, 11, 21, 221, 9303, 93251, 102554, 195805, 2060604]; [n le 10 select I[n] else 9324*Self(n-5)+Self(n-10): n in [1..40]]; // Vincenzo Librandi, Dec 25 2013
CROSSREFS
Sequence in context: A324550 A214617 A041200 * A113702 A373616 A102488
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 26 2013
STATUS
approved