login
A041811
Denominators of continued fraction convergents to sqrt(426).
2
1, 1, 2, 3, 11, 25, 161, 347, 1202, 1549, 2751, 4300, 174751, 179051, 353802, 532853, 1952361, 4437575, 28577811, 61593197, 213357402, 274950599, 488308001, 763258600, 31018652001, 31781910601, 62800562602, 94582473203, 346547982211, 787678437625
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 177502, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
FORMULA
G.f.: -(x^22 -x^21 +2*x^20 -3*x^19 +11*x^18 -25*x^17 +161*x^16 -347*x^15 +1202*x^14 -1549*x^13 +2751*x^12 -4300*x^11 -2751*x^10 -1549*x^9 -1202*x^8 -347*x^7 -161*x^6 -25*x^5 -11*x^4 -3*x^3 -2*x^2 -x -1) / (x^24 -177502*x^12 +1). - Colin Barker, Nov 25 2013
a(n) = 177502*a(n-12) - a(n-24) for n>23. - Vincenzo Librandi, Dec 24 2013
MATHEMATICA
Denominator[Convergents[Sqrt[426], 30]] (* Harvey P. Dale, Apr 13 2012 *)
CoefficientList[Series[-(x^22 - x^21 + 2 x^20 - 3 x^19 + 11 x^18 - 25 x^17 + 161 x^16 - 347 x^15 + 1202 x^14 - 1549 x^13 + 2751 x^12 - 4300 x^11 - 2751 x^10 - 1549 x^9 - 1202 x^8 - 347 x^7 - 161 x^6 - 25 x^5 - 11 x^4 - 3 x^3 - 2 x^2 - x - 1)/(x^24 - 177502 x^12 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 24 2013 *)
CROSSREFS
Sequence in context: A041955 A239445 A157161 * A229066 A248161 A056851
KEYWORD
nonn,easy,frac
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 25 2013
STATUS
approved