This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A041811 Denominators of continued fraction convergents to sqrt(426). 2
 1, 1, 2, 3, 11, 25, 161, 347, 1202, 1549, 2751, 4300, 174751, 179051, 353802, 532853, 1952361, 4437575, 28577811, 61593197, 213357402, 274950599, 488308001, 763258600, 31018652001, 31781910601, 62800562602, 94582473203, 346547982211, 787678437625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 177502, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1). FORMULA G.f.: -(x^22 -x^21 +2*x^20 -3*x^19 +11*x^18 -25*x^17 +161*x^16 -347*x^15 +1202*x^14 -1549*x^13 +2751*x^12 -4300*x^11 -2751*x^10 -1549*x^9 -1202*x^8 -347*x^7 -161*x^6 -25*x^5 -11*x^4 -3*x^3 -2*x^2 -x -1) / (x^24 -177502*x^12 +1). - Colin Barker, Nov 25 2013 a(n) = 177502*a(n-12) - a(n-24) for n>23. - Vincenzo Librandi, Dec 24 2013 MATHEMATICA Denominator[Convergents[Sqrt[426], 30]] (* Harvey P. Dale, Apr 13 2012 *) CoefficientList[Series[-(x^22 - x^21 + 2 x^20 - 3 x^19 + 11 x^18 - 25 x^17 + 161 x^16 - 347 x^15 + 1202 x^14 - 1549 x^13 + 2751 x^12 - 4300 x^11 - 2751 x^10 - 1549 x^9 - 1202 x^8 - 347 x^7 - 161 x^6 - 25 x^5 - 11 x^4 - 3 x^3 - 2 x^2 - x - 1)/(x^24 - 177502 x^12 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 24 2013 *) CROSSREFS Cf. A041810, A040405. Sequence in context: A041955 A239445 A157161 * A229066 A248161 A056851 Adjacent sequences:  A041808 A041809 A041810 * A041812 A041813 A041814 KEYWORD nonn,easy,frac AUTHOR EXTENSIONS More terms from Colin Barker, Nov 25 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 21 20:16 EDT 2019. Contains 321382 sequences. (Running on oeis4.)