login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A041761 Denominators of continued fraction convergents to sqrt(401). 2
1, 40, 1601, 64080, 2564801, 102656120, 4108809601, 164455040160, 6582310416001, 263456871680200, 10544857177624001, 422057743976640240, 16892854616243233601, 676136242393705984280, 27062342550364482604801, 1083169838256973010176320 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (40,1).

FORMULA

a(n) = F(n, 40), the n-th Fibonacci polynomial evaluated at x=40. - T. D. Noe, Jan 19 2006

From Philippe Deléham, Nov 23 2008: (Start)

a(n) = 40*a(n-1) + a(n-2), n>1; a(0)=1, a(1)=40.

G.f.: 1/(1 - 40*x - x^2). (End)

MATHEMATICA

a=0; lst={}; s=0; Do[a=s-(a-1); AppendTo[lst, a]; s+=a*40, {n, 3*4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)

Denominator[Convergents[Sqrt[401], 20]] (* Harvey P. Dale, Aug 18 2012 *)

CoefficientList[Series[1/(1 - 40 x - x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 24 2013 *)

CROSSREFS

Cf. A041760, A040380.

Sequence in context: A207740 A208082 A009984 * A229635 A278431 A229584

Adjacent sequences:  A041758 A041759 A041760 * A041762 A041763 A041764

KEYWORD

nonn,frac,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 04:05 EST 2017. Contains 294959 sequences.