login
A041697
Denominators of continued fraction convergents to sqrt(368).
2
1, 5, 11, 60, 2291, 11515, 25321, 138120, 5273881, 26507525, 58288931, 317952180, 12140471771, 61020311035, 134181093841, 731925780240, 27947360742961, 140468729495045, 308884819733051, 1684892828160300, 64334812289824451, 323358954277282555
OFFSET
0,2
FORMULA
G.f.: -(x^2-5*x-1)*(x^4+12*x^2+1) / ((x^4-48*x^2+1)*(x^4+48*x^2+1)). - Colin Barker, Nov 22 2013
a(n) = 2302*a(n-4) - a(n-8) for n>7. - Vincenzo Librandi, Dec 23 2013
MATHEMATICA
Denominator[Convergents[Sqrt[368], 30]] (* Vincenzo Librandi, Dec 23 2013 *)
LinearRecurrence[{0, 0, 0, 2302, 0, 0, 0, -1}, {1, 5, 11, 60, 2291, 11515, 25321, 138120}, 30] (* Harvey P. Dale, Nov 21 2015 *)
PROG
(Magma) I:=[1, 5, 11, 60, 2291, 11515, 25321, 138120]; [n le 8 select I[n] else 2302*Self(n-4)-Self(n-8): n in [1..40]]; // Vincenzo Librandi, Dec 23 2013
CROSSREFS
Sequence in context: A173875 A095150 A215759 * A121170 A239322 A101209
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 22 2013
STATUS
approved