login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numerators of continued fraction convergents to sqrt(332).
2

%I #14 Mar 18 2017 12:37:31

%S 18,73,91,164,1403,1567,2970,13447,487062,1961695,2448757,4410452,

%T 37732373,42142825,79875198,361643617,13099045410,52757825257,

%U 65856870667,118614695924,1014774438059,1133389133983,2148163572042,9726043422151,352285726769478

%N Numerators of continued fraction convergents to sqrt(332).

%H Vincenzo Librandi, <a href="/A041626/b041626.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 26894, 0, 0, 0, 0, 0, 0, 0, -1).

%F G.f.: -(x^15 -18*x^14 +73*x^13 -91*x^12 +164*x^11 -1403*x^10 +1567*x^9 -2970*x^8 -13447*x^7 -2970*x^6 -1567*x^5 -1403*x^4 -164*x^3 -91*x^2 -73*x -18) / ((x^8 -164*x^4 +1)*(x^8 +164*x^4 +1)). - _Colin Barker_, Nov 10 2013

%t Numerator[Convergents[Sqrt[332], 30]] (* _Vincenzo Librandi_, Nov 05 2013 *)

%Y Cf. A041627.

%K nonn,cofr,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Nov 10 2013