login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A041551 Denominators of continued fraction convergents to sqrt(293). 10
1, 8, 9, 17, 145, 4947, 39721, 44668, 84389, 719780, 24556909, 197175052, 221731961, 418907013, 3572988065, 121900501223, 978776997849, 1100677499072, 2079454496921, 17736313474440, 605114112627881, 4858649214497488, 5463763327125369, 10322412541622857 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The a(n) terms of this sequence can be constructed with the terms of sequence A178765. For the terms of the periodical sequence of the continued fraction for sqrt(293) see A040275. We observe that its period is five. - Johannes W. Meijer, Jun 12 2010

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 4964, 0, 0, 0, 0, 1).

FORMULA

a(5n) = A178765(3n), a(5n+1) = (A178765(3n+1) - A178765(3n))/2, a(5n+2) = (A178765(3n+1) + A178765(3n))/2, a(5n+3) = A178765(3n+1) and a(5n+4) = A178765(3n+2)/2. - Johannes W. Meijer, Jun 12 2010

G.f.: -(x^8-8*x^7+9*x^6-17*x^5+145*x^4+17*x^3+9*x^2+8*x+1) / (x^10+4964*x^5-1). - Colin Barker, Nov 12 2013

a(n) = 4964*a(n-5) + a(n-10) for n>9. - Vincenzo Librandi, Dec 20 2013

MATHEMATICA

Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[293], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *)

Denominator[Convergents[Sqrt[293 ], 30]] (* Vincenzo Librandi, Dec 20 2013 *)

PROG

(MAGMA) I:=[1, 8, 9, 17, 145, 4947, 39721, 44668, 84389, 719780]; [n le 10 select I[n] else 4964*Self(n-5)+Self(n-10): n in [1..40]]; // Vincenzo Librandi, Dec 20 2013

CROSSREFS

Cf. A041550, A040275, A041019, A041047, A041091, A041151, A041227, A041319, A041427 and A041551.

Sequence in context: A042753 A042727 A041128 * A057104 A095191 A050706

Adjacent sequences:  A041548 A041549 A041550 * A041552 A041553 A041554

KEYWORD

nonn,frac,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 14:54 EST 2019. Contains 320327 sequences. (Running on oeis4.)