Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #15 Jun 13 2015 00:49:35
%S 17,188,393,581,2136,17669,55143,72812,200767,2281249,77763233,
%T 857676812,1793116857,2650793669,9745497864,80614776581,251589827607,
%U 332204604188,915999035983,10408194000001,354794595036017,3913148739396188,8181092073828393
%N Numerators of continued fraction convergents to sqrt(292).
%H Vincenzo Librandi, <a href="/A041548/b041548.txt">Table of n, a(n) for n = 0..200</a>
%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,4562498,0,0,0,0,0,0,0,0,0,-1).
%F G.f.: -(x^19 -17*x^18 +188*x^17 -393*x^16 +581*x^15 -2136*x^14 +17669*x^13 -55143*x^12 +72812*x^11 -200767*x^10 -2281249*x^9 -200767*x^8 -72812*x^7 -55143*x^6 -17669*x^5 -2136*x^4 -581*x^3 -393*x^2 -188*x -17) / ((x^10 -2136*x^5 -1)*(x^10 +2136*x^5 -1)). - _Colin Barker_, Nov 22 2013
%t Numerator[Convergents[Sqrt[292],40]] (* _Harvey P. Dale_, Dec 20 2012 *)
%Y Cf. A041549, A040274.
%K nonn,cofr,frac,easy
%O 0,1
%A _N. J. A. Sloane_.
%E More terms from _Colin Barker_, Nov 22 2013