This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A041448 Numerators of continued fraction convergents to sqrt(240). 2
 15, 31, 945, 1921, 58575, 119071, 3630705, 7380481, 225045135, 457470751, 13949167665, 28355806081, 864623350095, 1757602506271, 53592698538225, 108942999582721, 3321882686019855, 6752708371622431, 205903133834692785, 418558976041008001, 12762672415064932815 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (0,62,0,-1). FORMULA G.f.: -(x+1)*(x^2-16*x-15) / ((x^2-8*x+1)*(x^2+8*x+1)). - Vincenzo Librandi, Nov 02 2013, simplified by Colin Barker, Dec 28 2013 From Gerry Martens, Jul 11 2015: (Start) Interspersion of 2 sequences [a0(n),a1(n)]: a0(n) = ((-15-4*sqrt(15))/(31+8*sqrt(15))^n+(-15+4*sqrt(15))*(31+8*sqrt(15))^n)/2. a1(n) = (1/(31+8*sqrt(15))^n+(31+8*sqrt(15))^n)/2. (End) MATHEMATICA Numerator[Convergents[Sqrt[240], 30]] (* or *) CoefficientList[Series[(15 + 31 x + 945 x^2 + 1921 x^3 + 945 x^4 - 31 x^5 + 15 x^6 - x^7)/(1 - 3842 x^4 + x^8), {x, 0, 30}], x] (* Vincenzo Librandi, Nov 02 2013 *) a0[n_] := (-15-4*Sqrt[15]+(-15+4*Sqrt[15])*(31+8*Sqrt[15])^(2*n))/(2*(31+8*Sqrt[15])^n) // Simplify a1[n_] := (1+(31+8*Sqrt[15])^(2*n))/(2*(31+8*Sqrt[15])^n) // Simplify Flatten[MapIndexed[{a0[#], a1[#]}&, Range[10]]] (* Gerry Martens, Jul 10 2015 *) CROSSREFS Cf. A041449, A040224. Sequence in context: A041446 A042853 A065575 * A157767 A146889 A061047 Adjacent sequences:  A041445 A041446 A041447 * A041449 A041450 A041451 KEYWORD nonn,frac,easy AUTHOR EXTENSIONS More terms from Colin Barker, Dec 28 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 22 20:03 EST 2019. Contains 320403 sequences. (Running on oeis4.)