%I #24 Dec 26 2023 07:03:42
%S 15,451,13545,406801,12217575,366934051,11020239105,330974107201,
%T 9940243455135,298538277761251,8966088576292665,269281195566541201,
%U 8087401955572528695,242891339862742402051,7294827597837844590225,219087719274998080108801
%N Numerators of continued fraction convergents to sqrt(226).
%H Vincenzo Librandi, <a href="/A041420/b041420.txt">Table of n, a(n) for n = 0..200</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (30,1).
%F a(n) = 30*a(n-1)+a(n-2), n>1 ; a(0)=15, a(1)=451 . G.f.: (15+x)/(1-30*x-x^2). - _Philippe Deléham_, Nov 22 2008
%t Numerator[Convergents[Sqrt[226], 20]] (* _Harvey P. Dale_, Feb 02 2012 *)
%Y Cf. A041421.
%K nonn,cofr,frac,easy
%O 0,1
%A _N. J. A. Sloane_.
%E Additional term from _Colin Barker_, Nov 07 2013