login
Numerators of continued fraction convergents to sqrt(226).
3

%I #24 Dec 26 2023 07:03:42

%S 15,451,13545,406801,12217575,366934051,11020239105,330974107201,

%T 9940243455135,298538277761251,8966088576292665,269281195566541201,

%U 8087401955572528695,242891339862742402051,7294827597837844590225,219087719274998080108801

%N Numerators of continued fraction convergents to sqrt(226).

%H Vincenzo Librandi, <a href="/A041420/b041420.txt">Table of n, a(n) for n = 0..200</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (30,1).

%F a(n) = 30*a(n-1)+a(n-2), n>1 ; a(0)=15, a(1)=451 . G.f.: (15+x)/(1-30*x-x^2). - _Philippe Deléham_, Nov 22 2008

%t Numerator[Convergents[Sqrt[226], 20]] (* _Harvey P. Dale_, Feb 02 2012 *)

%Y Cf. A041421.

%K nonn,cofr,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E Additional term from _Colin Barker_, Nov 07 2013